
Week 5 - Monday



 What did we talk about last time?
 Number theory
 RSA











 Once you have great cryptographic primitives, managing keys 
is still a problem

 How do you distribute new keys?
 When you have a new user
 When old keys have been cracked or need to be replaced

 How do you store keys?
 As with the One Time Pad, if you could easily send secret keys 

confidentially, why not send messages the same way?



 We will describe several schemes for sending data
 Let X and Y be parties and Z be a message
 { Z } k means message Z encrypted with key k
 Thus, our standard notation will be:
 X → Y: { Z } k
 Which means X sends message Z, encrypted with key k, to Y

 X and Y will be participants like Alice and Bob and k will be a 
clearly labeled key

 A || B means concatenate message A with B



 Typical to key exchanges is the idea of interchange keys and 
session keys

 An interchange key is a key associated with a particular user 
over a (long) period of time

 A session key is a key used for a particular set of 
communication events

 Why have both kinds of keys?



 If only a single key (instead of interchange and session keys) 
were used, participants are more vulnerable to:
 Known plaintext attacks (and potentially chosen plaintext attacks)
 Attacks requiring many copies of encrypted material for comparison
 Replay attacks in which old encrypted data is sent again from a 

malicious party
 Forward search attacks in which a user computes many likely 

messages using a public key and thereby learns the contents of such 
a message when it is sent



 To be secure, a key exchange whose goal is to allow secret 
communication from Alice to Bob must meet this criteria:
1. Alice and Bob cannot transmit their key unencrypted
2. Alice and Bob may decide to trust a third party (Cathy or Trent)
3. Cryptosystems and protocols must be public, only the keys are 

secret



 If Bob and Alice have no prior arrangements, classical 
cryptosystems require a trusted third party Trent

 Trent and Alice share a secret key kAlice and Trent and Bob 
share a secret key kBob

 Here is the protocol:
1. Alice →Trent: {request session key to Bob} kAlice

2. Trent →Alice: { ksession } kAlice || { ksession } kBob

3. Alice → Bob: { ksession } kBob



 Unfortunately, this protocol is vulnerable to a replay attack
 (Evil user) Eve records { ksession } kBob sent in step 3 and also some 

message enciphered with ksession (such as "Deposit $500 in Dan's 
bank account")

 Eve can send the session key to Bob and then send the replayed 
message

 Maybe Eve is in cahoots with Dan to get him paid twice
 Eve may or may not know the contents of the message she is 

sending
 The real problem is no authentication



 We modify the protocol to add random numbers (called 
nonces) and user names for authentication
1. Alice →Trent: { Alice || Bob || rand1 } kAlice

2. Trent →Alice: { Alice || Bob || rand1 || ksession || {Alice || ksession }kBob } 
kAlice

3. Alice → Bob: { Alice || ksession }kBob

4. Bob →Alice: { rand2 } ksession

5. Alice → Bob: { rand2 – 1 } ksession



 Needham-Schroeder assumes that all keys are secure
 Session keys may be less secure since they are generated with 

some kind of (possibly predictable) pseudorandom generator
 If Eve can recover a session key (maybe after a great deal of 

computational work), she can trick Bob into thinking she's 
Alice as follows:
1. Eve → Bob: { Alice || ksession }kBob

2. Bob →Alice: { rand3 } ksession [intercepted by Eve]
3. Eve → Bob: { rand3 – 1 } ksession



 Denning and Sacco use timestamps (T) to let Bob detect the replay
1. Alice →Trent: { Alice || Bob || rand1 } kAlice

2. Trent →Alice: { Alice || Bob || rand1 || ksession || {Alice || T || ksession }kBob } kAlice

3. Alice → Bob: { Alice || T || ksession }kBob

4. Bob →Alice: { rand2 } ksession

5. Alice → Bob: { rand2 – 1 } ksession

 Unfortunately, this system requires synchronized clocks and a useful 
definition of when timestamp T is "too old"



 The Otway-Rees protocol fixes these problem by using a 
unique integer num to label each session
1. Alice → Bob: num || Alice || Bob || { rand1 || num || Alice || Bob } kAlice

2. Bob →Trent: num || Alice || Bob || {rand1 || num || Alice || Bob } kAlice || 
{ rand2 || num || Alice || Bob } kBob

3. Trent → Bob: num || { rand1 || ksession } kAlice || { rand2 || ksession } kBob

4. Bob →Alice: num || { rand1 || ksession } kAlice



 Strange as it seems, these key exchange protocols are actually 
used

 Kerberos was created at MIT as a modified Needham-Schroeder 
protocol (with timestamps)
 Originally used to control access to network services for MIT students and 

staff
 Current versions of Windows use a modified version of Kerberos for 

authentication
 Many Linux and Unix implementations have an implementation of 

Kerberos
 Kerberos uses a central server that issues tickets to users which 

give them the authority to access a service on some other server





 Suddenly, the sun comes out!
 Public key exchanges should be really easy
 The basic outline is:

1. Alice → Bob: { ksession } eBob

 eBob is Bob's public key
 Only Bob can read it, everything's perfect!
 Except … 
 There is still no authentication



 Alice only needs to encrypt the session key with her private 
key

 That way, Bob will be able to decrypt it with her public key 
when it arrives

 New protocol:
1. Alice → Bob: {{ ksession } dAlice }eBob

 Any problems now?



 A vulnerability arises if Alice needs to fetch Bob's public key from a 
public server Peter

 Then, Eve can cause problems
 Attack:

1. Alice → Peter: Send me Bob's key [intercepted by Eve]
2. Eve → Peter: Send me Bob's key
3. Peter → Eve: eBob

4. Eve →Alice: eEve

5. Alice → Bob: { ksession } eEve [intercepted by Eve]
6. Eve → Bob { ksession } eBob





 The previous man in the middle attack shows a significant 
problem

 How do we know whose public key is whose?
 We could sign a public key with a private key, but then…
 We would still be dependent on knowing the public key 

matching the private key used for signing
 It's a massive chicken and egg or bootstrapping problem



 A typical approach is to create a long chain of individuals you trust
 Then, you can get the public key from someone you trust who 

trusts someone else who … etc.
 This can be arranged in a tree layout, with a central root certificate 

everyone knows and trusts
 This system is used by X.509

 Alternatively, it can be arranged haphazardly, with an arbitrary 
web of trust
 This system is used by PGP, which incorporates different levels of trust





 What magic happens when you type your password into…
 Windows or Unix to log on?
 Amazon.com to make a purchase?
 A Cobra Kai fan site so that you can post on the forums?

 A genie from the 8th dimension travels back in time and 
checks to see what password you originally created



 The password is checked against a file on a computer
 But, how safe is the whole process?
 Cobra Kai fan site may not be safe at all
 Amazon.com is complicated, much depends on the implementation 

of public key cryptography
 What about your Windows or Unix computer?



 Your computer needs to be able read the password file to 
check passwords

 But even an administrator shouldn't be able to read 
everyone's passwords

 Hash functions to the rescue!





 Hash functions
 Birthday attacks
 Digital signatures
 Samuel Costa presents



 Office hours end at 3 p.m. today
 Office hours on Friday from 1:45-4 p.m. are canceled
 Read section 12.5
 Work on Assignment 2
 Due Friday


	COMP 4290
	Last time
	Questions?
	Assignment 2
	Colm Oneacre Presents
	Key Management
	Key management
	Notation for sending
	Kinds of keys
	Possible attacks using single keys
	Key exchange criteria
	Classical exchange: Attempt 0
	What's the problem?
	Needham-Schroeder: Attempt 1
	Problems with Needham-Schroeder
	Denning and Sacco: Attempt 2
	Otway-Rees: Attempt 3
	Kerberos
	Public Key Exchange
	Public key exchange
	Easily fixable
	(Wo)man in the middle
	Key Infrastructure and Storage
	Key problems
	Certificate signature chains
	Hash Function Motivation
	Where do passwords go?
	In reality…
	Catch-22
	Upcoming
	Next time…
	Reminders

